Forschungsschwerpunkte am Laboratorium für



**Informationstechnologie** 



# Verfahren: Molecular beam epitaxy (MBE) [fi



#### Vorteile der UltrahochVakuum-Bedingungen:

- keine gegenseitige Wechselwirkung der Moleküle und Atome in der Kammer
- ⇒ Zeit zum Wachstum einer Atomlage << Zeit zur Bedeckung mit Verunreinigungen</p>
- ⇒ In situ Beobachtung des Wachstums durch Elektronenbeugung

# Wachstumsbestimmende Schritte bei der Epitaxie

**Adsorption-Desorption** 



# Epitaxie von Strukturen für Si-basierende nanoelektronische Bauelemente



Integration von Si-Nanostrukturen in epitaktische Oxide für Quanteneffekt-Bauelemente (z.B. Resonante Tunneldiode, -Transistoren, Speicher)



#### **Type I Doppelheterostruktur**

Lokalisierung von Elektronen und Löchern im Si-Quantum-Well

 $\Delta E_{c} = 2.6, \Delta E_{v} = 2.2 \text{ eV}$ 



A.Fissel, D. Kühne, E. Bugiel, H.J. Osten, Cooperative solid-vapor-phase epitaxy: An approach for fabrication of single-crystalline insulator/Si/insulator nanostructures, Appl. Phys. Lett. 88 (2006) 153105.



Wachstumsmoden durch Grenz- und Oberflächenenergetik bestimmt:

 $\Delta \gamma = \gamma_{\rm Sch} + \gamma_{\rm Gr} - \gamma_{\rm Su}$ 

- γ<sub>Sch</sub> Oberflächenenergie der Schicht
- γ<sub>Gr</sub> Grenzflächenenergie
- γ<sub>Su</sub> Oberflächenenergie des Substrats

**Modifikation durch epitaktisch gekapselte Festphasenepitaxie** 

Si-Beschichtung bei tiefen Temperaturen → Inselbildung kinetisch verhindert



**Si(111)** 

2. Gd<sub>2</sub>O<sub>3</sub> barrier

Si well

1. Gd<sub>2</sub>O<sub>3</sub> barrier

Si(111) sub

nm

### Herstellung von Strukturen für nichtflüchtige Speicher mit Nanocluster-"Floating Gate"



Klassische Struktur mit poly-Si als Ladungsspeichermedium Struktur mit Metall- oder Halbleiter-*Nanoclustern* als Ladungsspeichermedium

### Vorteile:

- Reduzierung des defektinduzierten Leckstroms (Entladung) durch das Tunneloxid
- Transfer einzelner Elektronen und Arbeiten mit nur wenigen gespeicherten Elektronen
  - → Einwachsen von Si-Nanoinseln in die Oxidschicht

# Epitaktisches Überwachsen von Si-Nanoclustern mit Gd<sub>2</sub>O<sub>3</sub>



#### Einbau von kristallinen Si-Nanoinseln in einkristallines Gd<sub>2</sub>O<sub>3</sub>

#### Vorteile des epitaktischen Einwachsens:

- Definierte Einstellung der Dicke des Tunneloxids
- Beeinflussung der Inselgröße und der Inseldichte





A. Fissel, A. Laha, E. Bugiel, D. Kühne, M. Czernohorsky, R. Dargis, H.J. Osten, *Silicon in functional epitaxial oxides: A new group of nanostructure*, Microelectronics Journal (in press)

## Epitaxie von verschiedenen Strukturtypen des Siliziums [f] (gefördert durch die DFG)



#### Bandabstand und Valenzband-Diskontinuität als Funktion der Hexagonalität für Si Polytypen

### **Type I Heterostruktur**

Schern und Löchern im hexagonalen Polytyp





## **Technologischer Ansatz**



#### Rotation der atomaren Si-Ebenen durch den periodischen Einbau von 1/3 ML Bor in spezielle Gitterplätze in der Oberfläche





### Einfluß von Bor in der Si-Oberfläche:

- 1. Verspannung der Oberfläche durch die Bildung von Si-B-Bindungen
- 2. Oberflächenpassivierung durch Si-B-Ladungstransfer

## **Experiment**



#### Wachstum und Bor-Präparation (Blenden- und Temperatur-Regime)



### In situ Kontrolle mittels Elektronenbeugung (RHEED)

(7x7)-Si(111) (√3x√3) B-Struktur nach B-Beschichtung nach 4 ML Si-Wachstum vor Beschichtung





(1x1)-Si(111)



(√3x√3)B-Struktur

### **Erste Ergebnisse**

Hochaufgelöste TEM-Querschnittsaufnahme eines Zwillingsübergitters mit 8facher Periodizität entsprechend dem Wachstum von 2,5 nm Si pro Zyklus



10 nm

A. Fissel, E. Bugiel, C.R. Wang, H.J. Osten, *Formation of twinning-superlattice regions by artificial stacking of Si layers*, J. Cryst. Growth 290 (2006) 392.

# Anwendung von neuen Isolatormaterialien mit lfi höherer dielektrischer Konstante

Si

SiC

SiO<sub>2</sub> besitzt nur eine kleine dielektrische Konstante,  $\kappa = 3.9$ .

Ultra-dünnes SiO<sub>2</sub> für die nächste Transistorgeneration (hohe Leckströme, Degradation, Diffusion von Verunreinigungen)



Defekt-reiche SiO<sub>2</sub>/SiC Grenzfläche (Kohlenstoffcluster, Grenzflächendefekte).

SiO<sub>2</sub> Degradation unter hohen elektrischen Feldstärken (geringes κ)

$$\kappa^{\rm SiC} \mathbf{E}_{\rm SiC} = \kappa^{\rm Oxide} \mathbf{E}_{\rm Oxide}$$

### Anwendung von neuen Isolatormaterialien mit höherer dielektrischer Konstante

Schematischer Bandverlauf Gd<sub>2</sub>O<sub>3</sub>/Si (ohne thermisches Gleichgewicht) Schematischer Bandverlauf Gd<sub>2</sub>O<sub>3</sub>/6H-SiC (ohne thermisches Gleichgewicht)



Geeignete Bandkanten-Diskontinuitäten

#### Geeignete Bandkanten-Diskontinuitäten

A. Fissel, M. Czernohorsky, R. Dargis, H.J. Osten, *Growth and* properties of gadolinium oxide dielectric layers on silicon carbide for high-k application, Mat. Sci. Forum 556-557 (2007) 655.



#### A.Fissel, M. Czernohorsky, H.J. Osten, Characterization of crystalline rare-earth oxide high-k dielectrics grown by molecular beam epitaxy on silicon carbide,

Journal Vacuum Sci. Technol. B 24 (2006) 2115

Hysterese:  $< 0.1 \text{ V} \rightarrow \text{Dichte beweglicher Ladungen} < 5 \times 10^{11} \text{ cm}^{-2}$ 

Flachbandspannung: - 0.2 V → Dichte der festen Ladungen: ~ 1\*10<sup>12</sup> cm<sup>-2</sup>

(Eigenschaften vergleichbar mit Gd<sub>2</sub>O<sub>3</sub>/Si)

 $\kappa_{eff}$ : 16 ± 2; Stromdichte = 10<sup>-8</sup> A/cm<sup>2</sup>@1V

**Epitaktisches Wachstum** 



A. Fissel, Z. Elassar, O. Kirfel, E. Bugiel, M. Czernohorsky, H.J. Osten, Interface formation during molecular beam epitaxial growth of neodymium oxide on silicon, J. Appl. Phys. 99 (2006) 074105

## Untersuchung der Schichtmorphologie, Schichtdicke, lfi Grenz- und Oberfläche

**Röntgenreflektometrie & Röntgendiffraktometrie** 







Nanostrukturen (Prof. Pfnür)

**Spintronik (Prof. Oestreich)** 

Heterostrukturen für Si-Photovoltaik (Prof. Brendel, Dr. Harder)