

Bauelemente der Mikro- und Nanoelektronik

Karl R. Hofmann

Institut für Materialien und Bauelemente der Elektronik Laboratorium für Informationstechnologie

LNQE-Vortrag 27. 06. 2007

Forschungsthemen

NANOELEKTRONIK ADVANCED CMOS

NEUE MATERIALIEN

Epitaktische Ge-MOSFETs auf Silizium

Epitaktische Isolator/Si Tunnelbauelemente Ge-Nanocluster MOS-Speicher

Degradationsphysik MOSFETs und Flash-EEPROMs Epitaktisches Hi-k Gate-Dielektrikum BaSrO

Epitaktische Ge-MOSFETs auf Si-Substraten

- Zukünftige CMOS-Skalierung erfordert höhere MOSFET-Kanalbeweglichkeiten als Silizium
 - Transport-enhanced MOSFETs: verspanntes Si, SiGe, Wafer-Orientierung,..
- Integration von Germanium auf Siliziumsubstraten
 - 4x höhere Löcher- und 2,6x höhere Elektronenbeweglichkeit
 - Problem: Gitterfehlanpassung $4,2\% \Rightarrow$ extreme Defektbildung
 - Pseudosubstrate (gradiertes SiGe, GOI), zyklisches Tempern,...
- Direktes Wachstum mit Surfactant-Modifizierter Epitaxie
 - Copel et al. 1989, Horn-von-Hoegen et al.,...
 - Prinzipiell defektfreie dicke Ge-Schichten auf Si (111)
 - Abrupte Relaxation mit Versetzungsnetzwerk an Grenzfläche
 - Aber: Hohe Dotierung (~10¹⁹ cm⁻³) durch Surfactant (z.B. Sb); Mechanismus nur auf Si(111) wirksam
- Unsere Arbeiten: SME Ge-Schichten für Bauelemente
 - Niedrige Ge-Schichtdotierung (~10¹⁶ Sb cm⁻³) durch hohe T_{Growth}
 - Erste Herstellung von Ge-MOSFETs auf Si-Substraten (1999)
 - Analoger Relaxationsmechanismus auch auf Si(001) und Si(110)
 - Ziel: Ge-MOSFETs auf Si(001) mit high-k Gatedielektrikas

Surfactant-Modifizierte Epitaxie (SME) bei hohen Temperaturen T ~ 700°C

- Surfactant Sb ändert Oberflächenenergie und Adatom-Diffusionslänge, verhindert Inselbildung, führt zu bevorzugten Mikrofacettenorientierungen
- Dotierungseinbau < 5x10¹⁶ cm⁻³ durch starke Oberflächensegregation
- Abrupte Relaxation in mikro-rauer Phase zu Beginn des Wachstums
- Regelmäßiges Misfit-Versetzungsnetzwerk entsteht direkt an Grenzfläche
- Weiteres Wachstum der relaxierten Ge-Schicht mit wenigen Defekten
- Funktioniert analog zu Si(111) auch auf Si(001) und Si(110)!

Wachstumsphasen auf Si(001)

T. F. Wietler, APL 87(18), p. 182102-1/3, 2005

VG-MBE Anlage im Lfl

- Elektronenstrahlverdampfer für Si und Ge
- Effusionzellen für Surfactants Sb und B
- Basisdruck < 2x10⁻¹⁰ mbar
- in situ Analytik (RHEED, AES, LEED)
- Substratgröße bis 150 mm

SME von Ge-Schichten auf Si(111) und Si(001)

T.F. Wietler et al., Mat. Sci. Semicond. Proc., 8 (2005) 73

T.F. Wietler et al., TSF 508 (2006) 6

N- und p-dotierte Ge-Schichten mit Bauelementqualität

- Hintergrunddotierung ~10¹⁶ Sb cm⁻³
- Hohe Ladungsträgerbeweglichkeiten wie defektfreies dotiertes Bulk-Ge
 - n-Ge bis μ_n = 3100 cm²/Vs
 - p-Ge bis μ_p = 1600 cm²/Vs (B-Dotierung)

T.F. Wietler et al., Mat. Sci. Semicond. Proc., 8 (2005) 73; Reinking et al., APL 71(1997) 924

Löcher-Hallbeweglichkeit in Ge 2400 2000 Hall mobility μ_H [cm²/Vs] 1600 1200 800 400 0 10¹⁶ 10¹⁵ 10¹⁸ **10**¹⁷ 10¹⁹ Total impuritiy concentration N₁ [cm⁻³]

Erste Integration von Ge-MOSFETs auf Si-Substrat

p-Kanalbeweglichkeit μ_{ch} = 430 cm²/Vs (Rekord)

D. Reinking et al., Electron. Lett. 35 (1999) 503

Weitere Arbeiten: Ge-MOSFETs auf Si(001) mit High-k Gatedielektrikas

- Herausforderung: geeignetes Hi-k Dielektrikum für Germanium
- Hi-k/Ge Grenzfläche entscheidend

Erste Ergebnisse p-MOSFET mit amorphem Gateisolator HfO₂

Epitaktische Isolator/Si Tunnelbauelemente

CaF₂/Si Isolator-Halbleiterheterostruktur

- CaF₂ wächst epitaktisch auf Si(111): Fehlanpassung 0.6%, E_G = 12.1 eV, große Banddiskontinuitäten $\Delta E_C \approx 2.3 - 2.9 \text{ eV}$
- Quanten-Bauelemente, kompatibel mit Si-Technologie
- Resonante Tunneldiode mit CaF₂ Barrieren und Si-QW

Wachstumsherauforderungen

- Epitaktische CaF₂ Schichten auf Si: ultradünn, glatt, defektfrei
 - ⇒ MBE-Verfahren für atomar glatte CaF₂ Schichten
- Epitaktische Si-Schichten auf CaF₂: glatt, defektfrei
 - besonders schwierig wegen "Gesetz der Epitaxie"
 - Konventionelle SPE keine guten Resultate
 - ⇒ SPE-Verfahren mit Surfactants Sb und B

C.R. Wang et al., JVST A, 22, 2246-2250, 2004 C.R. Wang et al., IEEE Trans. Nanotech. 2, 236, 2003 C.R. Wang et al., Thin Solid Films 410 (1-2), 72-75, 2002

CaF₂/Si/CaF₂ Resonante Tunneldiode

Metal

MBE-Wachstum in Oxidfenster

C.R. Wang et al., Appl. Phys. Lett. 86 (2005) 033111.

I-V Charakteristiken mit SME hergestellter RTDs

2.8 nm Si-QW mit Surfactant Sb

4.0 nm Si-QW mit Surfactant B

- I-V Charakteristiken mit NDR, P/V Verhältnis ~2 bei 77K
- Peaklagen entsprechen einfacher Transmissionmatrix-Theorie Temperaturunabhängigkeit spricht für Tunnelmechanismus
- Keine Hysterese- oder Trappingeffekte
- Resonanter Tunneleffekt bei Raumtemperatur

C.R. Wang et al., Appl. Phys. Lett. 86 (2005) 033111 C.R Wang et al., IEEE Trans. Nanotech. 2, 236, 2003

Ge Nanocluster Flash-Speicher

Floating-Gate Flash-Speicher

Nanocluster Flash-Speicher

Nanocluster-Speicher

- Poly-Si Floating Gate in Flash EEPROM MOSFET-Struktur ersetzt durch Schicht isolierter Nanocluster
- Bessere Skalierbarkeit (dünnere Tunneloxide) da Oxiddefekte nur einzelne Cluster entladen
- Be- und Entladung der Cluster durch Tunneln mit jeweils wenigen Elekronenladungen
- Erforderliche Clustergrößen ~5 nm bei Dichten von ~1x10¹² cm⁻²

Clustermaterialien

 Bisher vor allem Si-Nanocluster mit verschiedenen Verfahren

Hier: Ge-Nanocluster (NC)

Ge-Nanocluster Speicher

Vorteile Ge-Nanocluster

- Geringere Bandlücke von Ge (0,66 eV) vs. Si(1,12 eV)
 ⇒ tiefere Potentialtöpfe im Oxid, verbesserte Speicherzeiten
- Dünnere Tunneloxide und damit schnellere Be- und Entladezeiten

Probleme der Ge-NC Gatestack-Herstellung

- Cluster in definiertem Tunnelabstand mit hohen Dichten und gleichförmigen kleinen Durchmessern
- Hohe Qualität des Tunnel- und Deckoxids und der Grenzflächen
- Ge darf bei Gatestackprozess nicht an Luft kommen ⇒ Bildung von GeO₂ (flüchtig bei Temperung) führt zu Strukturdefekten
- Cluster- und Deckoxidherstellung in einer Prozesskammer erforderlich!
- ⇒ Neues Verfahren für Ge-NC Speicher-Struktur entwickelt

PE-CVD Prozess für Ge-Nanocluster Gatestack

PE-CVD: Plasma-Enhanced Chemical Vapor Deposition

Kein Luftkontakt (Feuchtigkeit)

Clusterformierung

PE-CVD Gatestack amorphe Ge-Schicht

Einfluss unterschiedlicher Temperprozesse auf Dichte und Größe der Cluster

700°C, 180 s keine Cluster 1020°C, 5 s viele kleine Cluster 1020°C, 20 s wenige große Cluster

Dicke der amorphen Ge Ausgangsschicht 2,6 nm

Bisher bester Clusterprozess

Zielwerte:

 \rightarrow hohe Dichte: 10¹² cm⁻², kleiner Durchmesser: *d* \approx 5 nm

Erreichtes Ergebnis:

- Ge-Ausgangsschicht: 2.2 nm
- Temperung 950°C, 10 s
- Clusterdichte 7-10¹¹ cm⁻²
- Mittlerer Durchmesser 5.4 nm

Speicherzustand der Elektronen und Löcher auf Nanoclustern

- Photolumineszenzspektrum sollte größenabhängige quantisierte Zustände in Ge-Clustern nachweisen
- bisher keine Lumineszenz beobachtet → starke nichtstrahlende Rekombination an Clustergrenzfläche?

Zusammenarbeit mit Prof. Oestreich, Dr. Hübner (FKP)

Ladungsspeicherung in **Ge NC-MOS-Struktur**

p-Si Substrat Tunneloxiddicke 3,3 nm Deckoxiddicke 12,0 nm **Probe mit Ge-NC** Ladungsspeicherung $\Delta V_{FB} = 4,7 V$ Umladung durch **Elektronen oder** Referenz ohne NC Keine Ladungsspeicherung (Hysterese)

HF Kapazitäts-Spannungskennlinien:

f = 500 kHz, -5 V $\leq V_q \leq 1 \text{ V}$, Haltezeit der Endspannungen 30 s, d V_q /dt = 1 V/s

Weitere Ziele Ge-NC MOSFET-Speicher

- Herstellung von Ge-NC n-MOSFET
 Speicherstrukturen
- Klärung der physikalischen Speichermechanismen durch Analyse und Modellierung des elektrischen Verhaltens
- Untersuchung der Speichereigenschaften in Abhängigkeit von Strukturparametern und Prozess
 - Be- und Entladezeiten, Speicherzeit, Zyklenfestigkeit
 - Vergleich mit Si-NC Speicherstruktur
- Eignung als nichtflüchtiger und flüchtiger Speicher

Mitarbeiter		Kooperationen
Tobias Wietler Oliver Kerker	Epitaktische Ge-MOSFETs auf Silizium	AG Prof. Oestreich FKP
Dr. Cunrang Wang (jetzt Infineon)	Epitaktische Isolator/Si Tunnelbauelemente	AG Prof. Wollschläger FKP
Dr.Tobias Dürkop Robby Peibst	Ge-Nanocluster MOS-Speicher	
Gernot Krause	Degradationsphysik MOSFETs und Flash-EEPROMs	Infineon, Qimonda, LSI Logic
Dr. Alexandr Cosceev Dr. Rüdiger Ferretti	Epitaktisches Hi-k Gate-Dielektrikum BaSrO	AG Prof. Pfnür FKP
TEM-Analysen Dr. Eberhard Bugiel, MBE		AG Prof. Osten MBE