Leibniz Universität Hannover

Fakultät für Elektrotechnik und Informatik

LNQE on the Road

27. 6. 2007

Elektrotechnik

mehr Informationen unter www.et-inf.uni-hannover.de

Leibniz Universität Hannover

Fakultät für Elektrotechnik und Informatik

Elektrotechnik-Institute

Energieversorgung und Hochspannungstechnik

Grundlagen der Elektrotechnik und Messtechnik

Elektrothermische Prozesstechnik

Regelungstechnik/Mechatronik

Antriebssysteme und Leistungselektronik

Theoretische Elektrotechnik

Materialien und Bauelemente der Elektronik

LNQE in der Elektrotechnik

Vorträge (jeweils 15 min. + Diskussion)

H.J. Osten	(MBE)
B. Ponick	(IAL)
K.R. Hofmann	(MBE)
W. Mathis	(TET)
A. Fissel	(Lfl)

Kleiner Empfang

18:15: Beginn von Führungen im Lfi

Institut für Materialien und Bauelemente der Elektronik

MBE

Nanoelektronik in der Elektrotechnik an der LUH

H. Jörg Osten*, K.R. Hofmann*, A. Fissel**, W. Mathis***

*Institut für Materialien und Bauelemente der Elektronik **Laboratorium für Informationstechnologie ***Institute für Theoretische Elektrotechnik

Leibniz Universität Hannover

Moore's "Gesetz"

Die Anzahl von Transistoren pro Chip verdoppelt sich alle 18 Monate

Gordon E. Moore 1965

Nanoelektronik für den Massenmarkt

 Basierend auf Si-Wafern billig, große Waferflächen ausreichend verfügbar hohe Perfektion

Anforderungen

Funktionalität bei Raumtemperatur und höher integrierbare Lösungen

→ mehr als 10¹⁰ Bauelemente auf einem Chip hohe Ausbeute bei einfacher Herstellung

H.J. Osten

MBE

LNQE on the Road

Anwendungen für epitaktische Isolatoren

"klassisch"

High-*K* Dielektrika für Gate-Isolation Isolation durch lokales epitaktisches *silicon on Isolator* (SOI)

"Nichtklassisch"

Heterostrukturen für Quanteneffekt-Bauelemente, wie RTD, Tunnel-Transistoren usw Vergrabene Quantenpunkt-Bauelemente (z.B. für nichtflüchtige Speicher) Grundlage für dreidimensionale Integration

H.J. Osten

MBE

LNQE on the Road

Institut für Materialien und Bauelemente der Elektronik

MBE

Epitaktische Isolatoren für moderne CMOS-Technologien

H. Jörg Osten

Institut für Materialien und Bauelemente der Elektronik Leibniz Universität Hannover

- Tunnelströme steigen exponentiell mit abnehmender Dicke
- 3 Atomlagen SiO₂:
 - J_{leak} = >100 A/cm² @ 1V

PolySi

- Technisch nicht mehr homogen realisierbar (min. Schwankung 33 %)
- Nicht messbar
- Nicht stabil (reliability problems)

30 nm MOSFET (Intel)

H.J. Osten

•

LNQE on the Road

Lösung: Material mit höherer Dielektrizitätskonstante K

→ High-K Dielektrika (K steht für ε_r)

H.J. Osten

LNQE on the Road

Epitaxial Lanthanide Oxides (LnO) on Silicon

• Different valence states (+2, +3, +4)

→ Different stoichiometries (LnO, Ln₂O₃, LnO₂)

- Band alignment (leakage current) changes drastically with varying oxygen content (CNL changes)
- Transitions between different valence states possible
 Mixed-valence states can also be stable, like Pr₆O₁₁
 - → most suitable: single valence state LnO's

(Ln = La, Nd, Gd, Dy, Ho, Lu)

 different crystallographic structures

 LnO2:
 cubic CaF2 type,

 Ln2O3:
 cubic Mn2O3 type (bixbyite),

 hexagonal La2O3 type
 monoclinic

H.J. Osten

MBE

LNQE on the Road

MBC Phase Formation of Binary Rare-Earth Oxides

A: hexagonal (P63/m) B: monoclinic (C2/m) C: cubic (la-3) H,X high-T modifications

Desired: No phase transformation below typical CMOS processing temperatures (1050°C)

→ Our selection: Gd₂O₃

after: M. Foëx, J.P. Traverse, Rev. Int. Hautes Temp. Réfract. 1966

H.J. Osten

LNQE on the Road

Interface formation during growth is governed by oxygen

→ Oxygen partial pressure during growth is crucial

- → Too low: silicide formation at the interface
- \rightarrow Too high: SiO_x formation at the interface

LNQE on the Road

MBE Verbundprojekte

Crystalline Gate-Stacks for sub 100nm CMOS Transistors on FD-SOI (KrisMOS)

BMBF Verbundprojekt

11/2003 - 6/2006

Partner:

Industrie:

- AMO GmbH Aachen (Kurz)
- Techn. University Darmstadt (Schwalke)
- Paul-Drude-Institut Berlin (Ploog)
- Leibniz Universität Hannover (Osten)

Never stop thinking

H.J. Osten

LNQE on the Road

MegaEpos: BMBF-Verbundprojekt seit 3/07

• Forschung

Paul-Drude Institut Berlin AMO GmbH Aachen IHP GmbH Frankfurt(Oder) TU Darmstadt Leibniz Universität Hannover

UNIVERSITÄT DARMSTADT

Leibniz Universität Hannover

Industrie AMD NamLab (Qimonda) Hereaus

AMD NaMLab Heraeus

H.J. Osten

•

MBE

LNQE on the Road

Netzwerk des MBE-Instituts

Finanzierte Zusammenarbeit mit

FUDAN Universität Shanghai
 DAAD PPT-Programm

Personenaustausch, gemeinsamen Promotionen usw.

 TECHNION in Haifa/Israel German-Israelic Foundation Forschungskoorperation Personenaustausch

Weitere Partner:

University of Leuven (BE) National Academy of Science, Kiev (UA) Chalmers University of Technology, Göteborg (SE) Tyndall National Institute, Cork (IR)

H.J. Osten

MBE

LNQE on the Road

Molekularstrahlepitaxie in Hannover

- UHV-Cluster-Tool mit 6 Kammern
- automatisierter Transfer der Wafer zwischen den Kammern
- 4", 6" und 8" Wafer Handling, 10 Wafer gleichzeitig ladbar
- 9 Verdampfer mit massenspektrometrischer Steuerung
- kontrollierter Gaseinlass in Verdampferkammer (Restgaszusammensetzung im 10⁻⁸ mbar Bereich einstellbar)
- in situ RHEED mit Bildverarbeitung
- winkelaufgelöstes XPS in spezieller Kammer
- Metallilsierungskammer mit 4 Tiegel-ESV und speziellen Lochmasken für Kontaktelektroden
- Separate Temper-Kammer bis 1000 °C unter definierten Gasbedingungen (UHV → normal)
- →Perfekter "Cleanroom"
- → Herstellung und Bewertung von kristallinen Oxiden

MBE

LNQE in der Elektrotechnik

Vorträge (jeweils 15 min. + Diskussion)

H.J. Osten	(MBE)
B. Ponick	(IAL)
K.R. Hofmann	(MBE)
W. Mathis	(TET)
A. Fissel	(Lfl)

Kleiner Empfang

18:15: Beginn von Führungen im Lfi