Ballistic electron spectroscopy
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2d electrons — where do | find them?

Confining electrons to an interface

@ Electrons in metal: thin metal films or surface
- high electron density, short length scales
(Fermi length, mean free path)
- ultra high vacuum

@ Electrons in semiconductor:
Field effect transistor (Silicon-MOSFET)
+ easy tunable electron density

& Quantum Hall Effect (QHE)
Nobel prize 1985

@& Heterostructure grown atomic layer by layer
(Nobel prize 2000)
+ Very clean system

& Fractional QHE, Nobel prize 1998
& ballistic electron effects
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2d electrons in a heterostructure

@ Engineering of band edge to
create a quantum well

& Quantized energy in
growth direction (z)

& Free motion in x-y plane
@ Electron density n ~ 1015 m2

¥ Electron distance ~ 30 nm

& Fermi wave length ~ 80 nm

& High interface quality and
remote doping

¥ Very high mobilty u
(measured from o = eny)

& Mean free path of up to
100 um
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Getting smaller — gating the 2d electrons

& Metal on GaAs forms Shottky Diode
& Current | ~ exp(eV /KT) negligible
for VG<O and low T
& Gate and 2d electron sheet form plate
capacitor
9 C=¢eg A/d, Aq = C-VG = A-e-An
@ Change of electron density n by
applied voltage
& 1 gate + 2 contacts = MESFET
@& Depletion of electrons beyond
threshold voltage Vdep
@ Transfer gate pattern into 2DES
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Ballistic electrons in 2d — focusing

@ Electrons travel large distance
without scattering

@ ballistic transport

@ Revealed in magnetic focusing
experiments

& Lorentz force ~ B-v.in
perpendicular magnetic field B

@ Electrons forced on cyclotron
orbits in with r, ~1/B

Spector et al '90
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Ballistic electrons — optics and interference

& Fermi wave vector k. ~n %\ Schuster etal 9 ﬁ“
can be changed by gate
& Electron optics

@ Wave nature of electrons
@ interference effects
<& Double slit

Spector et al '90
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Ballistic 1d wire — quantized conductance

@ Ballistic wire: width w and
length L much smaller than

15

G (in units of 2¢*/h)

fa—
=

Ty
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@ no backscattering within

channel

¥ quantized conductance

(Wharam et al '88,
van Wees et al '88)
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1d wire — why quantized in 2e24/h ?

& Quantized energy perpendicular to wire (y) 1 /x
& Free motion in 1d along wire (x) .4 U .,11\ Wa S
& For one 1d sub-band: /

. . @ V)
@ Density of states 1d (no spin):
/
\owE hv R .]k./; T

& Current
2
I=e-v-[D(E)-AE]=%V

¥ Add spin degeneracy g = 2

G=l-2¢ 5 } AE = eV
Vo h

@ Add contributions of N occupied 1d sub-bands E
¥ G =N (2e2/h) "
& Conductance steps smoothed for short wire
@ Quantum point contact (QPC)




Open questions: Electron interaction in 1d

@ Additional conductance plateau
at G = 0.7-(2e°/h)

& Effect of electron-electron . : : rr
<& Different models proposed PRL 96 ;

< Kondo model

@ Spontaneous spin
polarization

G (in units of 2e*/h)

0.5F

< Jumping of subbands

@ For all models we expect change 0

of density of states D(E) % Gate Voltage V, ) o

& How to measure without
changing the system (no back-
action) ?



Proposal: ballistic electron spectroscopy

@ Source non-equilibrium
ballistic electrons by an
object of interest

@ Energy distribution maps
._ Transmission T(E)

@ Inner structure mirrored
by transmission

@ Energy resolved detection of
E ballistic electrons

) $ ._ @ No back-action of

measurement on object of
interest

@ Use quantum dot as
spectrometer
APL 89, 212103 (06)

spectrometer
interest and detector




Quantum dot — electrons in 0d

& Confinement in all dimensions . 2d

¥ Quantum dot (QD) Bg!
@ N electrons in QD il e? o

@ 1% approximation: disk with Gate
capacitance C

¥ Coulomb blockade energy:
E.=qg%/C=¢e?C

¥ Spacing of dot chemical g
potential: ., ,-M\ = E;

& Shift potential of quantum
dot with gate Vg

¥ Resonant single electron tunneling
only for pg > .4 > Hp
@ otherwise Coulomb blockade (CB) '

i N
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Analogue: Fabry-Perot spectrometer

Quantum dot spectrometer Fabry Perot spectrometer

& Transmission for selected
energies (frequencies)

@ Periodic transmission

@ Energy comb shifted by & Frequency comb tuned by
applied gate voltage distance d
ballistic mirrors
electrons incident ~
‘ light PM
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Quantum dot charge detection

operation
\ point

—
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@ Detect charge state of quantum dot

@ Use 1d wire near dot (Field et al '93) /

<@ Potential in wire changes due T gpc .
potential
to charge on quantum dot

conductance

& At step edge conductance 0.4——
very sensitive to local

potential

@ Step in wire conductance for -

each change of quantum
dot charge

Jopc(2€7/h)

C. Fricke et al., PRB '05
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Spectrometer with charge readout

@ Occupation of the dot depends on occupation of impinging electrons Q—(E)
and accessible empty outgoing states 1 — Q—(E) (0=Q<1)
Iy, =2yQ.(E) T, _,=y(1-Q_(E)
@ Dot occupancy p (0 <p < 1):

& Measure charge Q = -pe ( P) 01— PL 150

@ For dilute ballistic electrons: Q<1

} > p20,




Spectrometer calibration

& Spectrometer signal near
Fermi energy maps Fermi
distribution f(E)

2

P= 1

S(E)
& Measure dl/dV_~ dp/dE

@ Use temperature
dependence of peak width A
for spectrometer calibration

1+

@ AE/AVg =0.0719 £ 0.0007
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Ballistic signal

@ Source ballistic electrons with
QPC set to first plateau for well
defined injection spectrum

@ Inject Q(E) = const
@ Magnetic field B bends ballistic
electrons into the spectrometer
& Vary maximum energy E_ =

max

-eVS . of ballistic electrons

@ AC-modulation: Mark electrons
injected atE__

@ Linear shift of ballistic peak
position: -eV_ =1.01-E

@ No energy scaling factor
E=-a-eV_ with a<1 as
claimed previously

@ It works!
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Ballistic peak — amplitude

Signal amplitude

I ' I ' I
0.5 1.0 1.5
excess energy -eV_, (meV)

@ Signal decays for rising energy
& Scattering of ballistic electrons

& Compare to theory for e-e scattering
with equilibrium electrons
(Giuliani and Quinn, 1982)

@ Deviation due to large population
of non-equilibrium electrons?

& Agreement observed in
interference experiment (Yacoby
et al '91) — difference between
phase and energy relaxation?

& Superimposed oscillations due to
interference of different paths




Energy + angle distribution

& Maximum signal shifts to
larger field

¥ Velocity increases with
Increasing energy

@ Energy spread AE wider for
larger excess energy -eV

<& Small energy scattering

@ No noticeable change in angle
spread AB [ Ag

¥ Small energy scattering
results in little momentum
change

I
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dot occupation p (%)

Full DOS

@ Again QPC on 1 plateau

@ Measures full energy distribution
QQ(E) of ballistic electrons
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Summary

@ Ballistic electron spectroscopy
APL 89, 212103 (2006)

@ QPC charge detector for
measurement with empty dot

& Measurement of energy and angle

distribution of non-equilibrium ballistic
electrons

@ Apply now: QPC (0.7 anomaly), QD
(Kondo effect), energy relaxation, ....
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Thanks ...

This work was done at the Cavendish Laboratory in
Cambridge
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