Ballistic electron spectroscopy

Frank Hohls

- I. Introduction low dimensional electron systems and ballistic electrons
- II. The idea ballistic electron spectroscopy
- III. Charge readout of detector
- IV. Some data proof of concept

2d electrons – where do I find them?

Confining electrons to an interface

Electrons in metal: thin metal films or surface

- high electron density, short length scales (Fermi length, mean free path)
- ultra high vacuum
- Electrons in semiconductor: Field effect transistor (Silicon-MOSFET)
 - + easy tunable electron density
 - Quantum Hall Effect (QHE) Nobel prize 1985
- Heterostructure grown atomic layer by layer (Nobel prize 2000)
 - + Very clean system
 - Fractional QHE, Nobel prize 1998
 - ballistic electron effects

standing waves on metal surface

2d electrons in a heterostructure

 Quantized energy in growth direction (z)

- Free motion in x-y plane
- Electron density $n \sim 10^{15} \,\mathrm{m}^{-2}$
 - Electron distance ~ 30 nm
 - Fermi wave length ~ 80 nm

High interface quality and remote doping

- Very high mobility μ (measured from $\sigma = en\mu$)
- Mean free path of up to 100 µm

Getting smaller – gating the 2d electrons

 $\mathbf{O} = \epsilon \epsilon_0 \cdot \mathbf{A}/\mathbf{d}, \Delta \mathbf{q} = \mathbf{C} \cdot \mathbf{V}_{\mathbf{G}} = \mathbf{A} \cdot \mathbf{e} \cdot \Delta \mathbf{n}$

Change of electron density n by applied voltage

1 gate + 2 contacts = MESFET

Depletion of electrons beyond threshold voltage V_{dep}

Transfer gate pattern into 2DES

Ballistic electrons in 2d – focusing

- ballistic transport
- Revealed in magnetic focusing experiments
 - Lorentz force ~ B·v_F in perpendicular magnetic field B
 - Electrons forced on cyclotron orbits in with $r_{\rm c} \sim 1/B$

Ballistic electrons – optics and interference

- Fermi wave vector k_F ~ √n can be changed by gate
 ◆ Electron optics
- Wave nature of electrons
 - interference effects
 - Double slit interferometer with magnetic field
 - Aharonov-Bohm effect
 Δφ~Φ/Φ₀ (Φ flux)

Analogues to light optics

Ballistic 1d wire – quantized conductance

1d wire – why quantized in 2e²/h ?

Open questions: Electron interaction in 1d

- Additional conductance plateau at G = 0.7 · (2e²/h)
- Effect of electron-electron interaction
 - Different models proposed
 - 🔶 Kondo model
 - Spontaneous spin polarization
 - Jumping of subbands
- For all models we expect change of density of states D(E)
- How to measure without changing the system (no backaction) ?

Proposal: ballistic electron spectroscopy

Quantum dot – electrons in 0d

Analogue: Fabry-Perot spectrometer

Quantum dot charge detection

Detect charge state of quantum dot

Use 1d wire near dot (Field et al '93)

- Potential in wire changes due to charge on quantum dot
- At step edge conductance very sensitive to local potential
- Step in wire conductance for each change of quantum dot charge

C. Fricke *et al.*, PRB '05 M. Rogge *et al.*, PRB '05

Spectrometer with charge readout

Spectrometer calibration

Ballistic signal

Source ballistic electrons with QPC set to first plateau for well defined injection spectrum

 \Rightarrow Inject $\Omega(E) = const$

- Magnetic field B bends ballistic electrons into the spectrometer
- Vary maximum energy E_{max} = -eV_{ed} of ballistic electrons
- AC-modulation: Mark electrons injected at E_{max}
- Linear shift of ballistic peak position: -eV_{sd} = 1.01·E
 - ♦ No energy scaling factor E= -α·eV_{sd} with α<1 as claimed previously

It works!

Ballistic peak – amplitude

- Signal decays for rising energy
 - Scattering of ballistic electrons
 - - Compare to theory for e-e scattering with equilibrium electrons (Giuliani and Quinn, 1982)
 - Deviation due to large population of non-equilibrium electrons?
 - Agreement observed in interference experiment (Yacoby et al '91) - difference between phase and energy relaxation?

Superimposed oscillations due to interference of different paths

Energy + angle distribution

Full DOS

Summary

Thanks ...

This work was done at the Cavendish Laboratory in Cambridge

Thanks to

- Sir Michael Pepper, head of SP group
- Jonathan Griffiths and Geb A.C. Jones for the electron-beam write jobs
- Dave Ritchie for growing the wafer (himself!)

Funding was provided by the EU (RTN COLLECT) and the UK (EPSRC)

Research Training Networks

Engineering and Physical Sciences Research Council