Institut für Physikalische Chemie und Elektrochemie

Chemische Nanomaterialien

Womit trägt die Physikalische Chemie der Uni Hannover zum Gelingen des LNQE bei?

Die vorgestellten Arbeiten wurden mehrheitlich unter dem Dach des Zentrums für Festkörperchemie und Neue Materialien erarbeitet.

Arbeitsgruppen des PCI

Prof. Caro

Nanostrukturierte Wirt/Gast-Systeme und Funktionsschichten - PD Dr. Wark

- Dr. Oekermann
- Dr. Feldhoff

Prof. Heitjans

Dynamische und kinetische Prozesse an Festkörpern

Prof. Becker

Kleinste Festkörperteilchen und Mikrowellenspektroskopie - Dr. Grabow

Prof. Imbihl

Dynamische Prozesse an Oberflächen

PD Dr. Michael Wark

Deposition of porous sol-gel layers

Functionalization of porous materials

Proton conducting membranes for fuel cells

Inorganic nano-tubes

UV-vis spectroscopy of solids

Mesoporous SO₃H-functionalized SiO₂ with > 1000 m²/g

Functionalized mesoporous oxides (SiO_2) for proton conductivity <u>and</u> water storage (\Rightarrow additives for PEM fuel cell membranes)

Two methods for loading:

- 1. postsynthetic grafting with thiolsilane and oxidation.
- Co-condensation: addition of thiolsilane direct to synthesis gel for mesop. SiO₂, oxidation simultaneously to template removal.

Loading and, thus proton conductivity higher for samples formed by co-condensation

Mesoporous TiO₂ films with highly crystalline walls

D. Fattakhova-Rohlfing, M. Wark et al., Adv. Funct. Mater., 17 (2007), 123.

Au nanostructures in mesop. TiO₂ films – plasmon resonance

- Anchoring of Au³⁺ ions on thiol groups
- Reduction with NaBH₄

- Pulsed electrochemical deposition; starting with very short, negative potential pulse
- ⇒ generation of worm-like Au structures possible.

Mesoporous conductive indium-tin-oxide (ITO)

Relative pressure P/Po

D. Fattakhova, T. Oekermann, M. Wark, et al., Adv. Mater.18 (2006) 2980

Well-crystalline ITO nanoparticles

Non-aqueous synthesis of ITO nanoparticles from $ln(acac)_3$ and $Sn(OtBu)_4$, heating in autoclave to 200°C for 48 h.

I. Ba, M. Niederberger, M. Wark, A. Feldhoff, et al. Chem. Mater. 18 (2006), 2848.

Controlled growth of metal containing oxide nanotubes (NTs)

In a sol-gel process precipitated metal salt nanofibres work as templates to form NTs $[Co(NH_3)_6](HCO_3)(CO_3) \cdot 2H_2O$ aqueous solution

Uniform SiO_2 or TiO_2 NTs with high aspect ratios

By reduction of the template salt, metal nanowires (but contacting of NTs difficult) or chains of nanoparticles (Co: interesting magnetic properties) form in the NTs.

L. Ren, M. Wark, Chem. Mater. 17 (2005), 5928.

Dr. Torsten Oekermann

- (Photo-)Electrochemistry
- Impedance spectroscopy
- Time- and frequency-resolved photoelectrochemical methods
- Electrochemical deposition of porous layers
- Dye sensitized solar cells

Preparation of porous semiconductor films for DSSC by

- colloid-processing from nanoarticles
- electrophoretic deposition of nanoparticles
- sol-gel methods (collaboration with M. Wark)

Oekermann, Wessels

Novel method: Electrochemical preparation of porous semiconductor films for DSSC

- Crystalline ZnO layer is formed by cathodic electrodeposition at T > 65 °C
- Dye molecules in the electrodeposition bath adsorb to the growing film and are incorporated

Oekermann, Boeckler et al., J. Phys. Chem. 109 (2005) 12560

Benchmarking: Comparison of the efficiency of three types of solar cells under realistic conditions

Si single-crystal solar cell: 25 %

Dye-sensitized solar cell (à la Grätzel) 11,5 %

Dye-sensitized solar cell with electrodeposition of ZnO (à la Oekermann, Hannover, and Yoshida, Gifu, Japan) 6 % ⇒ World record for low-T prepared DSSC

costs

efficiency

Sliding roof of the AUDI car = Si single crystal solar cell

Testing facility on the institut's roof: Cells in vertical and horizontal orientation

Oekermann, Marschall

Aus Liebe zum Automobil

Novel concept: Dye-sensitized p-n- solar cells

Dr. Armin Feldhoff

Elektron microscopy: SEM, TEM

Micro structure analysis

In situ XRD (under gas atmosphere up to 1200 °C)

- Sekundärelektronendetektor
- Semi-in-lens-Detektor für kleine Arbeitsabstände
- Rückstreuelektronendetektor (BSE)
- Energiedispersives Röntgenspektrometer (EDXS),
 Oxford Instruments INCA 300, Detektion ab Be (Z = 4)

Auflösungsvermögen: 1,0 nm @ 15kV 2,2 nm @ 1kV Beschleunigungsspannung: 0,5 - 30 kV

Bruchspiegel eines Perowskitrohrs (Membran zur Sauerstoffabtrennung)

Gekreuzte TiO₂-Hohlfasern

Katalysatorträger aus TiO₂ (Anatas)

Feldemissions-Rasterelektronenmikroskop (FE-REM)

JEOL JSM-6700F

- Transmissionselektronenmikroskopie (BF, DF, HRTEM)
- Raster-Transmissionselektronenmikroskopie (STEM mit BF, HAADF)
- Elektronenbeugung (SAED, CBED, auch energiegefiltert)
- Energiegefilterte Transmissionselektronenmikroskopie (EFTEM)
- Elektronen-Energieverlust-Spektroskopie (EELS, ELNES), Gatan Imaging Filter, GIF 2001, mit 1k-CCD-Kamera
- Energiedispersive Röntgenspektroskopie (EDXS),
 Oxford Instruments INCA 200, Detektion ab Be (Z = 4)

Goldteilchen, oberflächenfunktionalisiert mit Proteinfilm

Perowskit entlang [012] $(Ba_{0.5}Sr_{0.5}Fe_{0.8}Zn_{0.2}O_{3-\delta})$

• Schottky-Feldemitter (ZrO/W(100))

• Gitterauflösung für STEM: ≤ 0,2 nm

• Beschleunigungsspannung: 200 kV (160 kV)

• Punktauflösung: \leq 0,19 nm (C_s = 0,5 mm)

500 nm

TiO_{2-x}-Stäbchen (Anatas) mit planaren Defekten

JEOL JEM-2100F-UHR

The sol-gel synthesis of perovskites involves nanoscale solid state reactions.

electron diffraction

Arbeitsgruppen des PCI

Prof. Caro

Nanostrukturierte Wirt/Gast-Systeme und Funktionsschichten

- PD Dr. Wark
- Dr. Oekermann
- Dr. Feldhoff

Prof. Heitjans

Dynamische und kinetische Prozesse an Festkörpern

Prof. Becker

Kleinste Festkörperteilchen und Mikrowellenspektroskopie - Dr. Grabow

Prof. Imbihl Dynamische Prozesse an Oberflächen

AK Becker, Lehrgebiet A

Beeinflussung der Kristallisation von Halbleitern und Metallen durch dispergierte Nanopartikel

z.B. Silizium und Nanopartikel z.B. Si₃N₄ Optische und NIR-Mikroskopie im Hochvakuum

Homogene Keimbildung

- reines Silizium (T_{schmelz}=1687K)
- Unterkühlung bis >100K möglich
- Einsetzen von homogener Keimbildung (Abb.2a-e)
- Schnelle Kristallisation (~1 sek)

Entstehung eines polykristallinen Probenkörpers mit rauer Oberfläche (Abb.1)

Heterogene Keimbildung

- Silizium mit Nanopartikeln <D>= 400nm
- geringe bis keine Unterkühlung möglich (<1K)
- Kristallisation ausgehend von heterogenen Keimen (Abb.4a-e)
- langsamere Kristallisation (~4-10 sek)

Probenkörper mit erkennbaren Kristalliten und glatter Oberfläche (Abb.3)

Dr. Jens-Uwe Grabow

- Überschallstrahl-Rotationspektroskopie:

Fourier Transform Microwave (FT-MW) Spectrometer Experimentelle (Instrument) und Theoretische (QM) Entwicklungen Produktion/Charakterisierung von größeren/instabilen Spezies:

Geometrische Struktur:	Trägheitsmomente
	(isotopologe Verschiebung $ ightarrow$ Koordinaten)
Interne Dynanik:	Drehimpulskopplung
	(Feinstruktur \rightarrow Potentialbarrieren, Achsenlage,
	mehrdimensionale Tunnelpfade)
Elektronische Struktur:	Kernspinkopplung
	(Hyperfeinstruktur \rightarrow molekulare Feldgradienten),
	Stark-Effekt
	(externes elektrisches Feld \rightarrow Dipolmoment)

- Hochdurchsatz-Experimente:

Scanning Probe Microwave (SP-MW) Microscope:

Experimentelle (Instrument) Entwicklungen:

Schnelle Charakterisierung der Eigenschaften dielektrischer Materialien

Molekularstrahl-Mikrowellen-Kohärenzspektroskopie

Dipolmoment von Corannulen

Dipolmomente von C_{10(n+1)}H₁₀

Experimentelles Dipolmoment (über Rotations-Stark-Effekt) : $\mu = 2.071(18) D$ (= 6.908(60) 10⁻³⁰ Cm) Größtes bekanntes Dipolmoment eines reinen, neutralen KW

*K.K. Baldridge, J.S. Siegel, *Theor. Chem. Acc.* 97, 67-71 (1997).

Mehrdimensionale Tunnelpfade

M. Schnell, J.-U. Grabow, Phys.Chem.Chem.Phys. 8, 2225(2006).

Molecular Dynamics

Multidimensional Large-Amplitude Motion: Revealing Concurrent Tunneling Pathways In Molecules With Several Internal Rotors**

Melanie Schnell and Jens-Uwe Grabow*

Angew. Chem. Int. Ed. 2006, 45, 3465-3470

Arbeitsgruppen des PCI

Prof. Caro

Nanostrukturierte Wirt/Gast-Systeme und Funktionsschichten

- PD Dr. Wark
- Dr. Oekermann
- Dr. Feldhoff

Prof. Heitjans

Dynamische und kinetische Prozesse in Festkörpern

- NMR-Spektroskopie
- Impedanz-Spektroskopie
- Mechanochemie

Prof. Becker

Kleinste Festkörperteilchen und Mikrowellenspektroskopie - PD Dr. Grabow

Prof. Imbihl Dynamische Prozesse an Oberflächen

Nano-Ionics: F^- ion conductivity of nanocrystalline and
microcrystalline CaF_2

W. Puin, P. Heitjans et al., Solid State Ionics 131(2000)159

Nanokristallines CaF₂ besitzt um 4 GO höhere Leitfähigkeit

Abscheidung durch Edelgaskondensation

Into the nano range by **ball milling**

Motional correlation rates over 10 decades via NMR probing one single process

Arbeitsgruppen des PCI

Prof. Caro

Nanostrukturierte Wirt/Gast-Systeme und Funktionsschichten

- PD Dr. Wark
- Dr. Oekermann
- Dr. Feldhoff

Prof. Heitjans

Dynamische und kinetische Prozesse an Festkörpern

Prof. Becker

Kleinste Festkörperteilchen und Mikrowellenspektroskopie

- Dr. Grabow

Prof. Imbihl Dynamische Prozesse an Oberflächen. Surface Science

Surface Science: NH₃-Induced Step Meandering on Pt(443)

Restructuring by interaction NH₃ in catalysis (STM)

 $p_{NH3} = 1 \times 10^{-6} \text{ mbar}$ (a) clean surface (b) 15 min

Creation of new step sites and with kink sites due to step meandering

Energy cost for restructuring ΔE_{Pt} :

$$J_{Pt} - P_{Pt} = \frac{\Delta H_{sub}(Pt)}{12N_A} = 47kJ / mol$$

8 broken bonds (4 per row)

 $\Delta E_{Pt} = 8 \text{ x } 47 \text{ kJ/mol} = 376 \text{ kJ/mol}$