

iversität Hannover

Quanteneffekte in Halbleiternanostrukturen

Rolf J. Haug

Abteilung Nanostrukturen Institut für Festkörperphysik Gottfried Wilhelm Leibniz Universität Hannover

Germany

Quantum Mechanics: Low-Dimensional Systems

2d Physics: Quantum Hall Effect

DFG Priority Program: 2000 - 2006

Fractional Quantum Hall Effect 80 5

uni hannover

Quantum Hall Effect at Room Temperature Novel Material: Graphene

Novoselov et al., Science 315 (2007)

our measurements: not yet as good

Low-Dimensional Structures: 1d, 0d

- lithography
- 1. optical lithography
- 2. electron beam lithography
- 3. direct writing with atomic force microscope (AFM)

 self-organized growth quantum dots (InAs, Si, Ge)

lattice mismatch between InAs

and AlAs (GaAs): 7%

Stranski Krastanov growth

Appl. Phys. Lett. 82, 1209 (2003)

Local Oxidation with AFM

 $2GaAs + 12p + 10OH^{-} \rightarrow Ga_2O_3 + As_2O_3 + 4H_2O + 2H^{+}$

Leibniz

Jniversität Hannover

500 nm

Interference Effects in Quantum Rings

 $G \propto \cos(2\pi \Phi/\Phi_0)$

flux quant.: $\Phi_0 = h / e$ $\Phi(h / e)$ **Aharonov-Bohm effect**

58mT: R=150nm

up to 50% modulation of

the conduct. periodicity

2 rings:

versität Hannover

Phys. Rev. Lett. 90, 196601 (2003)

Quantum Dot:

quasi-zerodimensional system in a semiconductor

Quantum Information Processing: Calculating with Quantum Mechanics

 $| \diamond \rangle + | \diamond \rangle$

two-level systems in quantum dots:

- charge
- spin

Spin Effects in Single Dots

Interaction Effects in Single Dots: Kondo Effect versus Spin Blockade

spin blockade

Kondo effect

spin-polarized leads necessary

both spins in the leads necessary

spin structure of many-electrons quantum dots

Phys. Rev. Lett. 96, 046802 (2006) Phys. Rev. Lett. 96, 176801 (2006)

ersität Hannover

Coupling between Quantum Dots: Artificial Molecule

Triple Quantum Dot

Leibniz

Universität Hannover

- triple quantum dot made with local anodic oxidation
- charge detection with quantum point contact

Shot Noise

• electrical current

۲

;;

uni hannover

barrier

Jniversität Hannover

Shot Noise Suppression

Shot Noise in Coupled Quantum Dots

Real Time Detection of Single Electrons

Phys. Rev. B 72, 193302 (2005) Phys. Rev. B 72, 233402 (2005)

direct analysis of tunneling properties

tunneling times, distribution, counting statistics Fano factor, ...

> Leibniz Universität Hannover

N. Maire

D. Tutuc

Dr. F. Hohls

N. Ubbelohde

A. Mühle

A. Hadzibrahimovic

O. Agafonov

Q. Ahmad

P. Barthold

M. Rogge

uni hannover

C. Fricke nanostrukturen

T. Ridder

H. Schmidt

