Forschungsschwerpunkte

Halbleiter

Nanostrukturen

Alles was leuchtet (Polymere, ...)

Optische Spektroskopie und Transport an Nanostrukturen Ladungsträgerdynamik (z.B. bosonische Exzitonenstreuung), Spin-Elektronik, ...

Experimentelle Methoden

Zeitaufgelöste Magnetooptik

Rauschmessung

Transport

Zeitaufgelöste, Magneto-Photolumineszenz

Spin Noise Spectroscopy in GaAs

M. Oestreich, M. Römer, R.J. Haug, and D. Hägele Institut für Festkörperphysik, Universität Hannover, Appelstraße 2, D-30167 Hannover, Germany (Received 18 May 2005; published 17 November 2005)

Assumption:

1.) *N* electrons are localized at their donors

2.) Spins of the electrons are in thermal equilibrium

3.) Spins are independent from each other

Measurement by Faraday rotation

Linear polarisierter cw Laser

Faraday Rotation

Messbar im transparenten Spektralbereich !

Zufällige "Magnetisierung"

Korrelationszeit = Spinlebensdauer

Spin noise spectrum

Spintronik -

die Elektronik der Zukunft?

S. Döhrmann, M. Römer, S. Oertel, H. Horn, L. Schmidt, S. Chen, J. Hübner

There's Plenty of Room at the Bottom

"When we get to the very, very small world ... we have ... completely new opportunities for design. ... We can use, not just circuits, but some system involving ... the interactions of quantized spins, etc."

Richard P. Feynman, APS Meeting, 29.12.1959

There's Plenty of Room at the Bottom

Atom

Motivation

today's electronics

- semiconductors, not metals
- electron's charge

spintronics

- spintronics = semiconductor electronics + spin \Rightarrow new functionality
- advantage : spin is a robust quantum mechanical system !!!

Fundamentals of

Semiconductor Spintronics

Injection of spin polarized carriers

2. Manipulation of spin polarized carriers

Detection of spin polarized carriers

3.

Advantages of

Semiconductor Spintronics

• Quantum mechanically stable

- electron spin
- localized hole spin
- nuclei spin
- New functionality
- Lower energy consumption /less heating ?
- ... ???
- Exciting New Physics !!!

"Disadvantages" of

Semiconductor Spintronics

- Spins not in thermal equilibrium (in contrast to magneto electronics)
- Electron spin not conserved (in contrast to electronic charge)
- Spin orbit interaction used for spin control but leads to spin relaxation

• Exciting New Physics required for future devices

Prospective Spintronic Devices

Spin transistor

Spin FET Reprogrammable Logic

Prospective Spintronic Devices

Spin VCSEL

laser emission

VCSEL intensity modulation by spin modulation

Prospective Spintronic Devices

 $|\psi\rangle = a_y |yes\rangle + a_n |no\rangle$

Will you marry me?

Spin Quantum Computer

Single spin dynamics

Room temperature spin dynamics

Spin relaxation in (110) GaAs QWs

Dresselhaus lowest subband

$$\mathcal{H}_{110} = -\frac{1}{2}\Gamma\sigma_z k_x \left[\langle k_z^2 \rangle - k_x^2 + 2k_y^2 \right]$$

spin relaxation depends on spin orientation. $\gamma_z < \gamma_x$

Intersubband Spin Relaxation (ISR)

Spin relaxation in (110) GaAs QWs

Spin-Optoelektronik

Spintronik -

die Elektronik der Zukunft?

Von der Spin-Dynamik

ZU

potentiellen Spin-Bauelementen

