

PSI-process on 6" Si substrates

H. Plagwitz, B. Terheiden, R. Brendel

Institut für Solarenergieforschung Hameln

Efficiency potential of thin-film Si wafers

Institut für Solarenergieforschung Hameln

- Assumptions: Good optics 90% of Lambertian \checkmark $\tau = 1 \ \mu s$ 16 μs measured \checkmark $S = 100 \ cm/s$ 120 cm/s measured \checkmark
- Simulated efficiency: $\eta = 18 \%$ $W = 2.5 \mu m$
 - R. Brendel, Solar Energy 77, 969, (2004).

Porous double layer

Closure of porous surface

First report on surface closure: V. Labunov et al., Thin Solid Films **137**, 123 (1986)

Institut für Solarenergieforschung Hameln

Building separation layer

TEM: N. Ott, Univ. Erlangen Nürnberg

First report on separation layer formation: *H. Tayanaka et al.,* in *Proc. 2nd World Conf., (Vienna 1998), p.1272, H. Tayanaka et al., Proc. 6th Sony Research Forum, (Sony 1996), p. 556, (in Japanese)*

Autodiffusion

Utilize out-diffusion from growth substrate!

A. Wolf, B. Terheiden and R. Brendel, *Prog. Photovolt: Res Appl.* (in press) **Institut für Solarenergieforschung Hameln**

Boron autodiffusion: cell result

Institut für Solarenergieforschung Hameln

Leibniz Universität Hannover

ISFH

FS: a-Si/SiN RS: B-BSF

 $V_{\rm OC} = 616 \, {\rm mV}$ $J_{\rm SC} = 29.0 \, {\rm mA/cm^2}$ FF = 78.8 % $\eta = 14.1 \%$

Cell area : 95.5 cm² Si film thickness : 26 µm © ISFH, H. Plagwitz, B. Terheiden, R. Brendel

Rear contact - rear junction PSI-module

Institut für Solarenergieforschung Hameln

4S interconnection

Top view, rear side

Institut für Solarenergieforschung Hameln

Institut für Solarenergieforschung Hameln

V _{OC}	=	3754 mV
(V _{oc}	=	626 mV/cell)
I _{SC}	=	388 mA
$(J_{\rm SC})$	=	28.4 mA/cm ²)
FF	=	67.3 %
η	=	12.0 %

Area : 9 x 9.1 cm² Si film thickness: 24 µm

COSIMA contact formation

COSIMA: COntacts to a-Si:H passivated wafers by Means of Annealing

- a-Si:H deposition: PECVD, 225 °C
- Al deposition
- Annealing: 300 °C, 5 min

H. Plagwitz, M. Nerding, N. Ott, H. Strunk, and R. Brendel "Low-temperature formation of local Al contacts to a-Si:Hpassivated Si wafers," Prog. Photovolt. **12**, 47 (2004)

Institut für Solarenergieforschung Hameln

- Efficiency of large area PSI solar cell as high as 14.1 %
- Utilization of porous Si as dopant source: $\eta = 14.5 \%$
- Surface passivation by a-Si:H
 - Interface defect density lower than 10⁹ cm⁻²
 - Enhanced open-circuit voltage

- A. Wolf, R. Horbelt for their contribution to this work.
- Funding was provided by the German BMU under contract no. 0329816E.

Institut für Solarenergieforschung Hameln