

NANO LUH

Leibniz Universität Hannover

Informationsveranstaltung

für Studierende der Nanotechnologie

Dr. Fritz Schulze-Wischeler

Laboratorium für Nano- und Quantenengineering Leibniz Universität Hannover

Themen:

- Fachpraktikum
- Bachelorarbeit
- Masterstudiengang Nanotechnologie

Bachelor of Science

Grundlagenfächer

- Einf. Nanotechnologie
- Chemie
- Elektrotechnik
- Maschinenbau
- Physik
- (+Mathematik)

Vertiefungsfächer (2 wählbar)

- Chemie
- Elektrotechnik
- Maschinenbau
- Physik

Schlüsselkompetenzen

Master of Science

Pflichtkompetenzfeld Methoden der -achpraktikum Bachelorarbeit Nanotechnologie

Wahlkompetenzfeld 1

Wahlkompetenzfeld 2

Wahlkompetenzfeld 3

Labore

Gegen Ende des Studiums, also ca. im dritten Studienjahr, ist ein **Praktikum** von 12 Wochen vorgesehen.

Als Praktikumsbetriebe kommen Firmen im Bereich der Chemie, der Elektrotechnik, des Maschinenbaus oder der Physik mit einem der folgenden Tätigkeitsfelder in Frage:

- Fertigungstechnologie f
 ür Mikro- und Nanobauteile
- Einsatz von Nanotechnologie in Herstellungsverfahren
- Halbleiterfertigung
- Fertigung mit Lasern

Zuständig ist das Praktikantenamt der Fakultät für Maschinenbau

Zum Praktikantenamt 2

https://www.maschinenbau.uni-hannover.de/de/studium/im-studium/praktikum/

Praktikantenamt

Das Praktikantenamt der Fakultät für Maschinenbau und der Fakultät für Elektrotechnik und Informatik berät Sie in allen Fragen rund um das Thema Praktikum und ist für die Prüfung Ihrer Unterlagen und für die Anerkennung von Praktika für folgende zehn Studienaänae zuständia:

Biomedizintechnik | Elektrotechnik und Informationstechnik | Energietechnik | Maschinenbau | Mechatronik | Nanotechnologie | Optische Technologien | Produktion und Logistik | Nachhaltige Ingenieurwissenschaft | Wirtschaftsingenieur/-in.

Anmeldung

Bitte melden Sie sich einmalig in der nachstehenden Datenbank an. Die Eintragung der einzelnen Praktika nimmt nur das Praktikantenamt vor.

Hier geht es zur Anmeldung!

Startseite Formular zur Anmeldung beim Praktikantenamt Impressum Kontakt

Willkommen beim Praktikantenamt der Leibniz Universität Hannover Digitale Anmeldung beim Praktikantenamt...

Die Anmeldung im Rahmen Ihres Studiums kann auch Online durchgeführt werden. Im folgenden werden Ihnen die dazu benötigtem Schritte näher erläutert.

Anmeldung in wenigen Schritten:

Matrikelnummer bereithalten Sie henötigen Ihre Matrikelnumn

Sie benötigen Ihre Matrikelnummer. Diese befindet sich auf Ihrem Studentenausweis.

Pormular ausfüllen

Füllen Sie das Formular aus. Achten Sie auf die Richtigkeit Ihrer Angaben, da eine Korrektur nach Absenden des Formulars nur nach manueller Freigabe durch einen Mitarbeiter des Praktikantenamtes möglich ist.

Sollten Sie hierbei Hilfe benötigen oder falls Sie sich unsicher fühlen, zögern Sie nicht uns zu kontaktieren.

E-Mail erhalten und per Bestätigungslink aktivieren

Nach erfolgreichem Absenden des Formulars erhalten Sie Ihre Eingaben zur Kontrolle und einen Aktivierungslink per E-Mail an die im Formular angegebene Adresse. Klicken Sie auf den Bestätigungslink um die Korrektheit Ihrer Eingaben zu bestätigen.

Der Aktivierungslink gilt nur 24 Stunden. Danach verfällt die Möglichkeit. Ihre Eingaben zu bestätigen.

Los geht's -->

Datenschutzhinweise

Organisation des Praktikums

- 1. Onlineregistrierung beim Praktikantenamt vornehmen
- 2. Geeignetes Unternehmen finden
- 3. Beim Praktikantenamt fragen, ob der Platz anerkannt wird
- 4. Praktikum absolvieren
- 5. Unterlagen einreichen (binnen 1-Jahres-Frist)

Wie finde ich eine tolle Praktikumsstelle....????

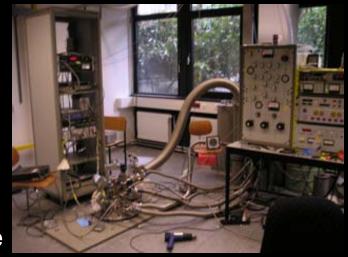
- Durchsuch das Internet!
- Rede mit anderen Studierenden
- ProfessorInnen ansprechen auf Industrie-Kontakte
- XING, LinkedIN
- Liste auf der LNQE-Website
- •

Fachpraktikum – Hilfe bei der Suche & Bewerbung

Der Career Service der ZQS unterstützt Studierende auf ihrem persönlichen Weg vom Studium über das Praktikum in den Beruf:

- Einschätzung persönlicher Interessen und Kompetenzen
- Praktische Erfahrungen und berufliche Entscheidungen
- Stellensuche und Bewerbungen
- Vorstellungsgespräche (Digital und Präsenz)
- Berufliche soziale Netzwerke (z. B. XING, LinkedIn)
- Selbstmotivation im Bewerbungsprozess

Bachelorarbeit



Bachelorarbeit

- Mitarbeit an einer aktuellen Forschungsfrage in einem Institut
 - Das beinhaltet z. B.: Literaturrecherche, Proben herstellen, messen, Auswerten, Programmieren, Publizieren, Workshop/Tagung,....
- Betreuung durch Professor oder Professorin, Ansprechpartner sind oft Promovierende
- Anfertigen einer schriftlichen Ausarbeitung und Vortrag über die Bachelorarbeit

Umfang: 450 Arbeitsstunden all inclusive, verteilt über maximal 6 Monate ab Themenausgabe

Anmeldung im Prüfungsamt

Bachelorarbeit

Wie finde ich ein Institut, wo ich eine Bachelorarbeit machen kann?

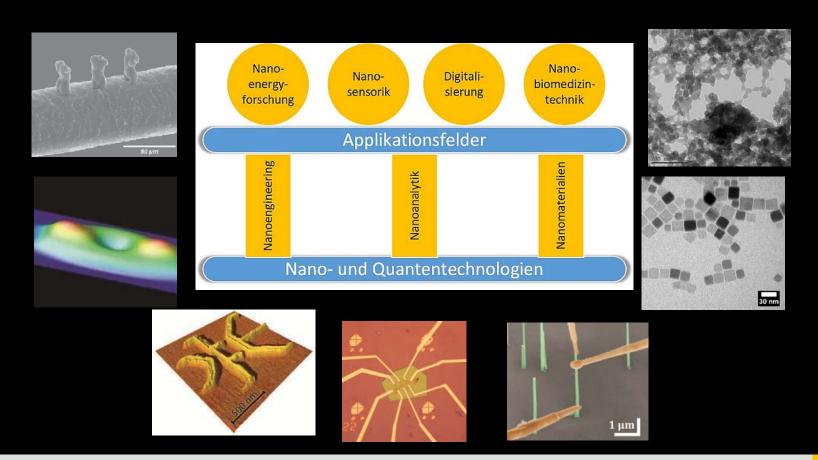
- Überlegen: Welcher Bereich? (Chemie, Physik, Elektrotechnik, Maschinenbau…)
 - Durchsuch das Internet!
 - Rede mit anderen Studierenden
 - Institute auf der LNQE-Website
 - Studienberatung: Fritz Schulze-Wischeler
- Professor oder Professorin ansprechen

Nanotechnologen auf dem Nanoday

Laboratorium für Nano- und Quantenengineering

Leibniz Forschungszentrum auf dem Gebiet Nanotechnologie der Leibniz Universität Hannover

- Gemeinsame Forschung von über 30 Arbeitsgruppen:
 Chemie, Physik und Ingenieurswesen
- Studiengang B. Sc. + M. Sc. Nanotechnologie mit 280 Studierenden
- Promotionsprogramm Hannover School for Nanotechnology
- LNQE-Forschungsbau mit Laboren, Büros und 409 qm Reinraum



Forschungsschwerpunkte des LNQE

Chemie

Institut für Physikalische Chemie und Elektrochemie

Institut für Organische Chemie

Deutsches Institut für Kautschuktechnologie e. V.

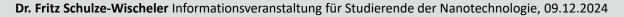
Institut für Grundlagen der Elektrotechnik und Messtechnik

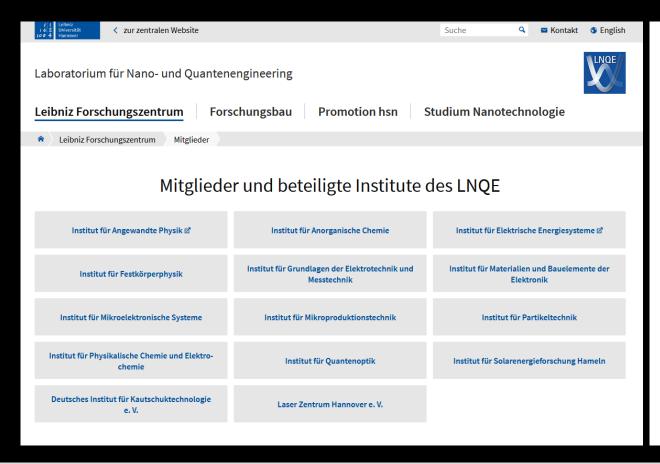
Institut für Mikroelektronische Systeme

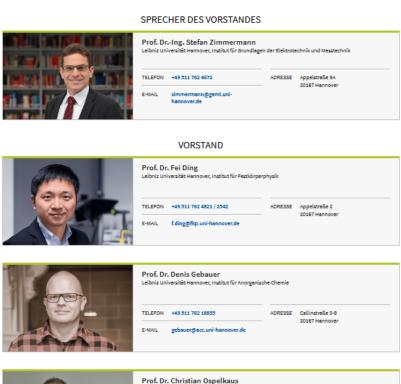
LNQE

Ingenieurs

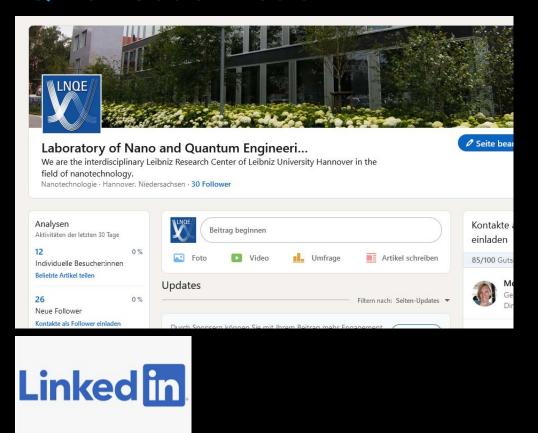
-wesen

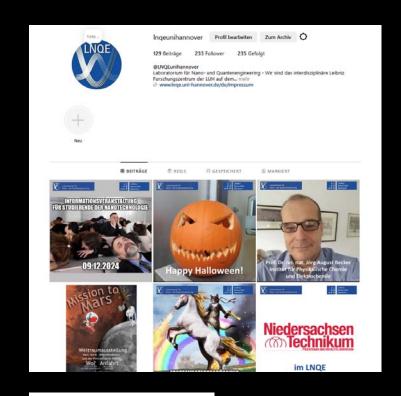

Institut für Angewandte Physik der TU BS


Institut für Materialien und Bauelemente der Elektronik



LNQE-Mitglieder -> Website


Leibniz Universität Hannover, Institut für Quantenoptik


TELEFON +49 511 762 17644

ADRESSE Welfengarten 1

LNQE on Social Media

Instagram

NANO on Social Media

Masterstudiengang

Studiengang Nanotechnologie

Nanotechnologie (Master of Science)

Steckbrief	
ART DES STUDIUMS	Weiterführend (Master)
REGELSTUDIENZEIT	4 Semester
STUDIENBEGINN	Wintersemester, Sommersemester
HAUPTUNTERRICHTSSPRACHE	Deutsch
SPRACHANFORDERUNGEN	Deutsche HZB: keine
	Internationale Bewerbung: Deutsch
	C1
	Mehr erfahren
ZULASSUNG	Zulassungsfrei
INTERNATIONAL	Auslandsaufenthalt ☑ möglich, aber

Teil B: Masterstudium

Allgemeines

Die Regelstudiendauer des Masterstudiengangs Nanotechnologie beträgt vier Semester, wovon ein Semester auf die Masterarbeit entfällt. Insgesamt sind 120 Leistungspunkte (LP) zu erreichen, welche sich wie folgt aufteilen:

Pflichtmodul "Methoden der Nanotechnologie"	11 LP
3 Wahlpflichtmodule	37 - 45 LP
Wahlmodule	15 - 23 LP
Studium Generale	6 LP
Labore	12-13 LP
Masterarbeit (6 Monate)	30 LP

Pflichtmodul: Methoden der Nanotechnologie (11 LP)

Physikalische Materialchemie	Feldhoff,	SoSe	6 LP
Quantenstrukturbauelemente für Nanotechnologie ¹	Haug	SoSe	5 LP

¹ Kenntnisse der Vorlesung "Einführung in die Festkörperphysik" werden vorausgesetzt

Teil B: Masterstudium

Allgemeines

Die Regelstudiendauer des Masterstudiengangs Nanotechnologie beträgt vier Semester, wovon ein Semester auf die Masterarbeit entfällt. Insgesamt sind 120 Leistungspunkte (LP) zu erreichen, welche sich wie folgt aufteilen:

Pflichtmodul "Methoden der Nanotechnologie"	11 LP
3 Wahlpflichtmodule	37 - 45 LP
Wahlmodule	15 - 23 LP
Studium Generale	6 LP
Labore	12-13 LP
Masterarbeit (6 Monate)	30 LP

Wahlpflichtmodul: Physikalische Chemie der Nanowerkstoffe (12 LP)

Statistische Theorie der Materie und Spektroskopie	Grabow, König	WiSe	6 LP
Elektronenmikroskopie	Feldhoff	WiSe	6 LP

Wahlpflichtmodul: Anorganische Chemie der Nanomaterialien (12 LP)

Es sind zwei Module aus dem folgenden Modulangebot zu absolvieren.

Analysis at the Nanoscale	Polarz	WiSe	6 LP
Computational Material Science: Optical Materials	Bande	WiSe	6 LP
Festkörperbildung: Mechanismen, Analytik, Anwendungen	Gebauer	Wise + SoSe	6 LP
Spezielle Radioanalytik für Weltraumanwendungen	Renz	SoSe	6 LP
Progress in Inorganic Chemistry	Polarz	WiSe	6 LP

Wahlpflichtmodul: Lasertechnik/Photonik (15 LP)

Lasermaterialbearbeitung	Overmeyer	SoSe	5 LP
Photonics	Chichkov/ Hinze	WiSe	5 LP
Kohärente Optik für Nanotechnologie	Mehlstäubler, Schmidt	SoSe	5 LP

Wahlpflichtmodul: Materialphysik (14 LP)

Physik der Solarzelle	Brendel	SoSe	5 LP
Optische Schichten für Ingenieurwissenschaften	Ristau	WiSe	5 LP
Physik der 2D Materialien für Nanotechnologie	Bockhorn, Haug	WiSe	4 LP

Wahlpflichtmodul: Mikro- und Nanoelektronik (13 LP)

Halbleitertechnologie	Krügener	WiSe	4 LP
Technologie integrierter Bauelemente	Krügener	SoSe	4 LP
Bipolarbauelemente	Wietler	WiSe	5 LP

Wahlpflichtmodul: Mikroproduktionstechnik (15 LP)

Nanoproduktionstechnik	Wurz	SoSe	5 LP
Production of Optoelectronic Systems	Overmeyer, Evertz	WiSe	5 LP
Aufbau- und Verbindungstechnik	Wurz	SoSe	5 LP

Wahlpflichtmodul: Biomedizintechnik (15 LP)

Mikro- und Nanotechnik in der Biomedizin	Wurz	WiSe	5 LP
Sensoren in der Medizintechnik	Zimmermann	SoSe	5 LP
Biomedizinische Technik für Ingenieure I	Glasmacher	WiSe	5 LP

Teil B: Masterstudium

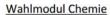
Allgemeines

Die Regelstudiendauer des Masterstudiengangs Nanotechnologie beträgt vier Semester, wovon ein Semester auf die Masterarbeit entfällt. Insgesamt sind 120 Leistungspunkte (LP) zu erreichen, welche sich wie folgt aufteilen:

Pflichtmodul "Methoden der Nanotechnologie"	11 LP
3 Wahlpflichtmodule	37 - 45 LP
Wahlmodule	15 - 23 LP
Studium Generale	6 LP
Labore	12-13 LP
Masterarbeit (6 Monate)	30 LP

Wahlmodul Physik

Einführung in die Festkörperphysik für Nanotechnologie ²	Gerhardt	WiSe	5 LP
Grundlagen der Lasermedizin und Biomedizinischen Optik für Nanotechnologie	Heisterkamp/ Lubatschowski	WiSe	4 LP
Seminar zu Photonik	Chichkov	WiSe	3 LP
Nichtlineare Optik für Nanotechnologie	Morgner	SoSe	5 LP
Atom- und Molekülphysik für Nanotechnologie	Ospelkaus	WiSe	5 LP
Atom- und Molekülphysik	Ospelkaus	WiSe	8 LP
Physics of Life	Chichkov	SoSe	2 LP
Proseminar Biophotonik	Roth	WiSe/SoSe	3 LP
Fortgeschrittene Festkörperphysik	Ding	WiSe	5 LP
Introduction to Nanophysics	Ding/Zhang	SoSe	10LP
Optical Characterization of Nanostructures	Ding	WiSe/SoSe	2 LP
Growth and Characterization of Nanostructures	Ding	WiSe/SoSe	2 LF


Energy Storage materials and devices	Zhang	WiSe	4 LP
Nanomaterials in energy storage devices	Zhang	WiSe/SoSe	2 LP
Seminar Chemie und Physik der Nanostrukturen	Haug	WiSe	4 LP
Fracture of Materials and Fracture Mechanics	Zhuang	WiSe	4 LP
Einführung in die Multiskalen- und Multiphysikmodellierung	Zhuang	WiSe	5 LP
Laborpraktikum Einführung in die Multiskalen - und Multiphysik - Modellierung	Zhuang	WiSe	2 LP
Atomoptik	Ospelkaus, Ospelkaus- Schwarzer	SoSe	4 LP

² Sofern nicht schon im Bachelorstudium belegt.

Wahlmodul Maschinenbau			
Biokompatible Werkstoffe	Klose	SoSe	5 LP
Optische Analytik	Heidenblut	WiSe	4 LP
Thermodynamik chemischer Prozesse	Kabelac	WiSe	4 LP
Biomedizinische Technik für Ingenieure II	Glasmacher	SoSe	5 LP
Optical Measurement Technology (Optische Messtechnik)	Reithmeier / Hinz	WiSe	5 LP
Qualitäts- und Umweltmanagement ³	Wurz	WiSe	5 LP
Implantologie	Glasmacher	SoSe	5 LP
Laser in der Biomedizintechnik	Kaierle	WiSe	5 LP
Biophotonik	Heisterkamp	SoSe	4 LP
Entwicklungsmethodik-Produktentwicklung I	Lachmeyer	WiSe	5 LP
Oberflächentechnik	Möhwald	WiSe	4 LP
Introduction to Optical Technologies	Calà Lesina	SoSe	5 LP
Introduction to Nanophotonics	Calà Lesina	WiSe	5 LP

Bildgebende Materialprüfung polymerer und weiterer Werkstoffe	Bittner	SoSe + WiSe	5 LP
Chemische Analyse von Kunststoffen	Shamsuyeva	SoSe + WiSe	5 LP
Brennstoffzellen und Wasserelektrolyse	Kabelac	SoSe	5 LP
Batteriespeichersysteme	Hanke- Rauschenbach	SoSe	5 LP
Data- and Al-driven Methods in Engineering	Seel	SoSe + WiSe	5 LP

Organische Chemie I	Cox, Kalesse, Heretsch	WiSe	6 LP
Anorganische Chemie III	Polarz	WiSe	3 LP

Polymere Materialien	Giese	WiSe	6 LP
Instrumentelle Methoden (3V, 1Ü)	Grabow, Müggenburg, Dräger	SoSe	5 LP
Festkörperbildung: Mechanismen, Analytik, Anwendungen	Gebauer	WiSe/SoSe	6 LP
Anorganische Festkörperchemie	Schneider, Renz	WiSe	5 LP
Funktionale Koordinationsverbindungen der Übergangselemente	Renz	SoSe	8 LF
Advanced Methods for Structure Analysis	Krysiak	SoSe	6 LF
Elektrochemie für Fortgeschrittene	Becker	WiSe + SoSe	6 LF
Intermolekulare Wechselwirkung	Becker	WiSe + SoSe	6 LF
			_

Wahlmodul Elektrotechnik MOS-Transistoren und Speicher 5 LP Wietler SoSe Bunert/ Garbe/ Grundlagen der elektrischen Messtechnik 5 LP SoSe Zimmermann 4 LP Wirkungsweise und Technologie von Solarzellen Peibst WiSe 5 LP Sensorik und Nanosensoren³ Zimmermann WiSe Mikro- und Nanosysteme: Modellierung, Körner WiSe 5 LP Charakterisierung, Herstellung und Anwendung Mikro- und Nanosysteme in der Biomedizin-Sensorik SoSe 5 LP Körner

³ Sofern nicht schon im Bachelorstudium belegt.

Außerdem zugelassen im Wahlbereich sind alle Veranstaltungen aus den Wahlpflichtmodulen, die nicht belegt werden.

Pflichtmodul "Methoden der Nanotechnologie"	11 LP
3 Wahlpflichtmodule	37 - 45 LP
Wahlmodule	15 - 23 LP
Studium Generale	6 LP
Labore	12-13 LP
Masterarbeit (6 Monate)	30 LP

Für das Studium Generale besteht die Wahlfreiheit aus dem gesamten Angebot der Universität, sofern die Veranstaltungen mit Leistungspunkten versehen sind. Diese Module gehen unbenotet als Studienleistungen in das Masterstudium ein.

Pflichtmodul "Methoden der Nanotechnologie"	11 LP
3 Wahlpflichtmodule	37 - 45 LP
Wahlmodule	15 - 23 LP
Studium Generale	6 LP
Labore	12-13 LP
Masterarbeit (6 Monate)	30 LP

Labor Fortgeschrittene Festkörperphysik für Nanotechnologie ⁴	Block	WiSe / SoSe	4 LP
Laborpraktikum Halbleitertechnologie	Krügener	WiSe	4 LP
Labor für Sensorik – Messen nicht-elektrischer Größen	Zimmermann	SoSe	4 LP
Laborpraktikum Mikrotechnik	Wurz	SoSe	4 LP
Laborübung Funktionsprinzipien ausgewählter Festkörpermaterialien	Feldhoff	SoSe	5 LP
Blockpraktikum "Labor- und Simulationspraxis Solarenergie"	Wietler	SoSe	4 LP

⁴ Kenntnisse der Vorlesung "Einführung in die Festkörperphysik" werden vorausgesetzt

Halbleiter-Labor im LNQE-Forschungsbau

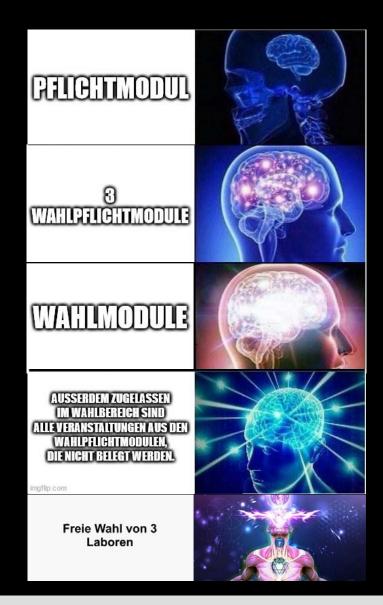
- Praktikum im Reinraum für Nanotechnologen & Elektrotechnik
- Kleingruppen mit je 3-4 Personen
- Herstellung und Charakterisierung vom MOS-Strukturen und pn-Dioden
- Eingangstest!

Teil B: Masterstudium

Allgemeines

Die Regelstudiendauer des Masterstudiengangs Nanotechnologie beträgt vier Semester, wovon ein Semester auf die Masterarbeit entfällt. Insgesamt sind 120 Leistungspunkte (LP) zu erreichen, welche sich wie folgt aufteilen:

Pflichtmodul "Methoden der Nanotechnologie"	11 LP
3 Wahlpflichtmodule	37 - 45 LP
Wahlmodule	15 - 23 LP
Studium Generale	6 LP
Labore	12-13 LP
Masterarbeit (6 Monate)	30 LP


Masterarbeit

- · Ablauf ist ähnlich der Bachelor-Arbeit, nur doppelter Umfang
- Masterarbeit ist <u>Vollzeit</u>
 - => nur geringen Möglichkeiten für Nebenbeschäftigungen (selbst nach entsprechenden Absprachen) während der Masterarbeit
 - => Nebentätigkeiten in der Masterarbeit mit ihrem Betreuer/Ihrer Betreuerin <u>vor</u>
 Beginn der Masterarbeit besprechen, so das Fallabhängig möglicherweise
 flexible Absprachen getroffen werden können

Plane im Voraus!!!

- Höchstes Maß an individueller Gestaltung eines Studiums im bekannten Universum
- 4 Semester sind:
 - 2 Semester SoSe + 1 Semester WiSe oder
 - 1 Semester SoSe + 2 Semester WiSe

und zusätzlich immer:

- 1 Semester Masterarbeit
- Alle 4 Semester durchplanen, Pflichtmodul zuerst. Dann Wahlpflichtmodul Zuletzt Wahlmodul + Praktika
- Stundenplan machen, in vergangenen Semestern gucken

ZULASSUNG UND BEWERBUNG

Der Masterstudiengang Nanotechnologie ist zulassungsfrei. Voraussetzungen für den Zugang ist ein Bachelorabschluss im Studiengang Nanotechnologie oder einem eng verwandten Studiengang.

Vorläufige Zulassung

Falls der Bachelorabschluss noch nicht vorliegt, kann eine vorläufige Zulassung erteilt werden, falls 150 ECTS-Punkte Bachelorstudiengängen vorliegen. Vorläufige Zulassung erlischt, falls der Bachelorabschluss nicht zum Beginn der Rückmeldefrist für das nachfolgende Semester vorliegt.

Sprache

Primäre Unterrichtssprache ist Deutsch. C1 GER

Wann ist der richtige Zeitpunkt für eine Immatrikulation im Master?

Pro vorzeitige Immatrikulation (ab 150 LP):

Kein Bafög-Anspruch mehr im Bachelorstudium

Contra:

- ➤ 30 LP / nicht mehr als 5 Leistungen an Masterleistungen können vorgezogen werden (auf Antrag innerhalb des Meldezeitraums)
- Anhörungsverfahren gilt für Bachelor- und Masterstudium getrennt
- Kein Masterabschluss ohne Bachelorabschluss
- Vorläufige Zulassung ist befristet; nach einem Semester droht automatische Exmatrikulation -> 1 Semester geht verloren!

ZULASSUNG UND BEWERBUNG

Fristen

Der Studienbeginn ist zum Winter- und Sommersemester möglich. Die Bewerbungsfristen sind 15.07. bzw. der 15.01 des Jahres

Bewerbung

Online: https://www.uni-hannover.de/de/studium/vor-dem-studium/bewerbung-und-zulassung/studienplatzbewerbung/master-deeu

DEADLINE ist zwingend

What Else.....

- Notenspiegel checken, APA ggf. erinnern.... pruefungsamt@maphy.uni-hannover.de
- Anhörungen:
 - 15 LP muss, sonst zählt es.
 - Für Bachelorstudierende mit einer Gesamtpunktzahl von 140 LP oder höher wird das Anhörungsverfahren ausgesetzt, sofern das Thema der Bachelorarbeit bereits ausgegeben wurde.

Berufsmöglichkeiten

...sind die Märkte

Medizin/Gesundheit

...Andere Berufe

Chemie

Wirkstoffsuche Synthese/Katalyse Sensoren Prozessüberwchung

Diagnose Therapie

Wirkstoff-Freisetzung
Tissue Engineering

Verbraucher

Kosmetik Sonnenschutz Antimikrobielle Textilien Verpackungen

Elektrotechnik, IT, Druck

Elektronisches Papier Displays (OLED, FED) Polymerelektronik Speicher (GMR) Sensoren Biochips Passivierung

Materialien

Nanotechnologie

Produktion

Umwelt

Abwasserreinigung Photokatalyse Umweltüberwachung

Energie

Batterien, Superkondensatoren Brennstoff- und Solarzellen Thermische Kraftwerke IR-Reflexionen/Verschiebung

Optik

Ophtalmik
Entspiegelung
Photonik
Wellenleiter
Optische Speicher
Lichttechnik

Automobil

Kratzfeste Decklacke Leichtbau (Schäume, Polymere) Korrosionsschutz Sensoren Katalyse (Verbrennung, Abgas)

Bauindustrie

Saubere Oberflächen Schaltbare Verschiebung Wärmedämmung Korrosionsschutz

...und eigene Firma gründen

Quelle: Hessen Nanotech 2007

...und akademische Karriere

Danke für die Aufmerksamkeit!

Fragen gerne jetzt!